一、概述
ELK 已经成为目前最流行的集中式日志解决方案,它主要是由 Beats、Logstash、Elasticsearch、Kibana 等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案。本文将会介绍ELK常见的架构以及相关问题解决。
- Filebeat:Filebeat是一款轻量级,占用服务资源非常少的数据收集引擎,它是ELK家族的新成员,可以代替 Logstash 作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到Kafka,Redis等队列。
- Logstash:数据收集引擎,相较于Filebeat比较重量级,但它集成了大量的插件,支持丰富的数据源收集,对收集的数据可以过滤,分析,格式化日志格式。
- Elasticsearch:分布式数据搜索引擎,基于Apache Lucene实现,可集群,提供数据的集中式存储,分析,以及强大的数据搜索和聚合功能。
- Kibana:数据的可视化平台,通过该web平台可以实时的查看 Elasticsearch 中的相关数据,并提供了丰富的图表统计功能。
二、ELK常见部署架构
2.1 Logstash作为日志收集器
这种架构是比较原始的部署架构,在各应用服务器端分别部署一个 Logstash 组件,作为日志收集器,然后将 Logstash 收集到的数据过滤、分析、格式化处理后发送至Elasticsearch 存储,最后使用 Kibana 进行可视化展示,这种架构不足的是:
Logstash 比较耗服务器资源,所以会增加应用服务器端的负载压力。
2.2 Filebeat作为日志收集器
2.3 引入缓存队列的部署架构
2.4 以上三种架构的总结
三、问题及解决方案
问题:如何实现日志的多行合并功能?
系统应用中的日志一般都是以特定格式进行打印的,属于同一条日志的数据可能分多行进行打印,那么在使用ELK收集日志的时候就需要将属于同一条日志的多行数据进行合并。
解决方案:使用 Filebeat 或 Logstash 中的 multiline 多行合并插件来实现。
1、multiline 在 Filebeat 中的配置方式:
-
pattern:正则表达式; -
negate:默认为false,表示匹配pattern的行合并到上一行;true表示不匹配pattern的行合并到上一行; -
match:after表示合并到上一行的末尾,before表示合并到上一行的行首。
如:
pattern: ‘[‘
negate: true
match: after
(1)Logstash 中配置的 what 属性值为 previous,相当于 Filebeat 中的 after,Logstash 中配置的 what 属性值为 next,相当于 Filebeat 中的 before。
(2)pattern => “%{LOGLEVEL}s*]“ 中的LOGLEVEL是Logstash预制的正则匹配模式,预制的还有好多常用的正则匹配模式,详细请看:
问题:如何将 Kibana 中显示日志的时间字段替换为日志信息中的时间?
默认情况下,我们在 Kibana 中查看的时间字段与日志信息中的时间不一致,因为默认的时间字段值是日志收集时的当前时间,所以需要将该字段的时间替换为日志信息中的时间。
解决方案 :使用 grok 分词插件与 date 时间格式化插件来实现
在 Logstash 的配置文件的过滤器中配置 grok 分词插件与 date 时间格式化插件,如:
CUSTOMER_TIME %{YEAR}%{MONTHNUM}%{MONTHDAY}s+%{TIME}
注:内容格式为:[自定义表达式名称] [正则表达式]
然后 logstash 中就可以这样引用:
② 以配置项的方式,规则为:(?<自定义表达式名称>正则匹配规则),如:
问题:如何在Kibana中通过选择不同的系统日志模块来查看数据
一般在Kibana中显示的日志数据混合了来自不同系统模块的数据,那么如何来选择或者过滤只查看指定的系统模块的日志数据?
解决方案:新增标识不同系统模块的字段或根据不同系统模块建ES索引
1、新增标识不同系统模块的字段,然后在Kibana中可以根据该字段来过滤查询不同模块的数据
这里以第二种部署架构讲解,在 Filebeat 中的配置内容为:
通过新增:log_from字段来标识不同的系统模块日志
2、根据不同的系统模块配置对应的ES索引,然后在Kibana中创建对应的索引模式匹配,即可在页面通过索引模式下拉框选择不同的系统模块数据。
这里以第二种部署架构讲解,分为两步:
① 在Filebeat中的配置内容为:
通过document_type来标识不同系统模块
② 修改Logstash中output的配置内容为:
在 output 中增加 index 属性,%{type}表示按不同的document_type值建ES索引
四、总结